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A LINEAR DIFFERENTIAL GAME WITH CONSTRAINTS IMPOSED ON THE CONTROL IMPULSES* 

V.I. UKHOBOTOV 

A linear differential game with a given time of termination is considered. 

The terminal set of the game is determined by the condition that the phase 

coordinates should be equal to zero. The choice of controls is restricted 

by impulse constraints /l-9/. Sufficient conditions for the termination 

of the game which define a stablelbridgeare found /8, 9/. A procedure for 

constructing the control of the first player withoutusinginformationabout 

the amountof remainingresourceofthe secondplayerisgiven. Classes of 

games for which the necessary and sufficient conditions are the same are 

pointed out. 

1. Let us consider a game whose equations of motion have the form /lo/ 

dz = N(t)du +M(t)du, z~ I?‘, ILEE~, us E,, TV ]a, pl’ (1.1) 

Here E, are linear, finite-dimensional normed spaces with norms I(s[[~,zz Ei;N(t),M(t) are 

continuous matrices of the corresponding dimensions. The control u is chosen by the first 

player and the control v by the second. 

The functions w: [t, T]+E, with bounded variations represent the admissible program 

controls at every segment It, 71. The amount of resources lost in forming controls is given 

by the variation [II dm(r) Iii /lo/. Here and henceforth in Sect.1 the integration is carried 

out from t to 7. 
The position of the game is represented by the point z* PL, v, where the numbers p 2 8, 

v>o characterize the store of the players' resources. When the controls are chosen on the 

segment [t,71, the rule governing the passage of the positions is given by the formulas /lo/ 

147) = P - l II W9 II 19 47) = v - l II W) II .a 

47) = 2 + 1 ~WW + j MWW 

(1.2) 

(1.3) 

The integrals in (1.3) are regarded as the Riemann-Stieltjes integrals. The conditions 

that the reserve of the available resources is not exceeded can be written in the form of the 

following inequalities: 

p_(7) > 0, Y(7) 2 0 (1.4) 

The aim of the first player is to realize the equality z@)=O. The presence of control 

impulses leads to an instantaneous change of position, and this requires a special deter- 

mination of the condition of termination /3-7/. With this purpose in mind, we shall consider 
the vectogram of the players 

v(t) = (5 = N(Qu: II uI( i < I}, V(t) = {z = M@)v : (1.5) 

Ilullz< 1) 

We write the condition for the termination of the game in the form 

Z(P) + V(P)V(P) c Ir(P)Q) (1.8) 

Let us denote the set of accessibility /lo/ of the players by 

U,% = {Z = l N(r)&(r) : l II du(r)II 1 =o I}, U,’ = U(t) (1.7) 

v,t = {Z = j M(r)dv(r) : l’ II dv(r)]] p = i}, V,L = V(t) (1.8) 

The sets (1.5), (1.7) and (1.8) are convex compacta in R” symmetrical about the origin 

of coordinates. 

Let us denote by pl(t,$) and pz(t,$) the reference functions /ll/ of the sets u(t) and 

V(t). It can be shown that the reference functions of the sets u*p and VP are: 

w(t, 9) = *ma; Bi(r, 44, i = 1, 2 w 
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The symmetry of the sets (1.5) implies that the function pi and m, are even in $. 

Let us denote by (z, I#) the scalar product of the vectors z, QE R”. Then the inclusion 

(1.6) can be written /II/ in the form 

(2 (P), Q) + "(P)'%(P, Q) -< P(P)Q(P, O), V+N~R" (1.10) 

2. When the method of absorption of the regions of accessibility is used /l-3/, the 

equation of the first player is constructed for games of the form (1.1) in such a manner that 
the position realized at the instant t satisfies the condition 

2 + vV? C CLU? i+ (z, $) + vn,(t, $I) < pn,(t, $), t"J, S R" (2.1) 

If inequality (2.1) does not hold for some vector $E Rn, then the second player adopts 

the control v such, that 

(M (r) du (r), $) = mz (t, +), \ II dv (r) II2 = v 
i i 

(2.2) 

Then v(p)= 0 and we have, for any control of the first player, 

(Z(P)VN X2,$) + vM,*) - (.u - P(P))%(kIp) > &)MP,S) 

which means that the inequality (1.10) does not hold. We shall assume that 

m&, Ip) > 0, VtCp, v$ E R" (2.3) 

We will give the other necessary conditions for the termination of the game. Let us fix 

the vector $E R” and consider the one-dimensional game 

d.z = (9, N(t)du) + ($7 M(t)du), r = ($3 2) G R (2.4) 

The vectograms (1.5) for game (2.4) are represented by segments. We obtain from /7/ the 

necessary conditions for the termination 

(2, Ip) + vmi(t, $)F,(G II) < pm& $), VV E R" (2.5) 

Let us write 

Lemma 1. If p < vF(t), then a vector + can be found for 

(2.5) will not hold. 

Proof. From (2.7) it follows that p<vFf(t, $) for some 

(2.6) 

(2.7) 

any ZE Rn, for whichinequality 

vector 96% R”. Therefore, 

using the fact that the functions (1.9) and (2.6) areevenin $, we find that the inequality 

(2.5) does not hold for one of the vectors z!z$. 
Let us assume that F(t)< + cc when t<p. From (2.6) and (2.7) it follows that 

F(t)= sup f(T); r(T)=rnr *=inf(f LO: VTPCfUr”} 
Kr<p 

Stipulating additionally the continuity of the function (2.6) and (2.7) at 

find that Fl(t, q)< F(t) when t< p. 
Us_ing the function F,, we define the sequence of functions 

The above formula yields, with help of (2.7), 

F(t) > Fi+At, $) > F,(t, $), i > 1, Vqi E R” 

Theorem 1. Let 

(z* 9) > m&Y $)(P - vF&, 9)) 

(2.3) 

t=p, we 

(2.9.) 

(2.10) 

(2.11) 

for some vector $ERn and i> 1. Then the second player will be able to formulate his 

control so that the inequality (1.10) will not hold. 

Proof. The case i = ‘i was discussed earlier. We shall assume that the theorem holds 

for i - 1. Then from (2.11) and formula (2.9) it follows that a number t<T<p exists for 

which 

(2, $) > m,(t, $)(P - OF) i V(z) - PI-,(T, $)mi (T, $) (2.12) 
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When t< r,<~, the second player takes the control &J(r) = 0. Then, using the formulas 

(1.2) and (1.3) and the inequality (2.12), we can show that the following relation holds for 

any control of the first player: 

(z(r), $) > %(G Jl#cL(r) - vF(T)) -t V(r) - Fi-l(G ?li))m& 1p) (2.13) 

Let p(r) > @(T). Then from the inequality n~~(t,~$)>~rn~(r,~#) it follows that the right- 
hand side of inequality (2.13) is not less than m,(r, q)@(t)-vF,_,(t, $)). According to the 
inductive assumption, the second player will be able to prevent the termination (1.10). If 

on the other hand IL(T) < v&)* then the termination (1.10) will, according to Lemma 1, be 

impossible. 

According to (2.10) we can determine 

F,(t, $) = lim F,(t, v), i--t 00 (2.14) 

The necessary conditions obtained can be written in the following form: let S={$E 
Rn:($ 9) = 1). Then 

(2.15) 

Let the initial reserves of the players' resources satisfy the relation p = VP(t). Then 
conditions (2.15) will become 

z E vKi(t), K,(t) = {x E R" : (5, 9) < (F(t) - (2.16) 

Fi(t, $))ml(ty 11)~ v$I 

3. We know /9/ that in a number of cases the conditions of regularity enable the suf- 

ficient conditions for the termination of the game to be derived from the necessary conditions. 

Let us consider the conditions of regularity for the necessary conditions of the type 
(2.15). Let the continuous function CD: S-e R andthe convex function m:R"+R be given, 
satisfying the conditions 

m(-$) = n(q)> 0, @(-$) = m(q)> 0, V$E R” (3.1) 

Let us write, for SE R", 

Theorem 2. Let the maximum in the first formula of (3.2) be attained, for any vector 

x# 0, on a unique vector. Then 

(3.2) 

Proof, Let the maximum in the second formula of (3.2) be attained on the vector ql. 
Substituting one of the vectors &qi into the first formula of (3.2) and using the condition 

ofevenness (3.1), we find that g(s)> cp. 

We shall show that 

g(x) = qJ 3 z = 0 (3.4) 

Indeed, from (3.2) and (3.4) it follows that (x,1(),)= 0 and the maximum is attained on 

two vectors **I. Therefore x = 0. 

The inequality g(x),< g,(x) + cp holds everywhere. Let g(z)< g,(r) f cp hold for some z E 

R". We put 

6 = g(r) - 'P < g<(m); Y = {Y c R" : gi(y) < 61 (3.5) 

Using the inequality m>O (3.1), we can show that the set Y is a convex compactum. 

Its reference function is equal to hm(+). 
The point xFZY. Therefore for every yfY there exists a unique vector 11, =$(Y)E S 

for which 

g(r - Y) = (r - Y, $)M@) + @(lp) (3.6) 

The function q(y) is continuous. Let us write 

Z(Y) = {z E Y: (2, 9,) = 6m(*), 11, = q(y)) (3.7) 

The set is a convex compactum depending semicontinuously on y from above. According to 

the Kakutani theorem /12/ there exists a fixed point y,rZ(y,). Then from (3.6) and (3.7) it 

follows that when lpO = $(Y,), we have 



dx - Y”) -= (.L, qlJrn(l$“) + 0,(&J - 6 c g(s) - b - ‘p 

According to (3.4), x-,yy,, : u, i.e. x 1 I- which is a contradiction. 

Definition 1. We will say that the condition of regularity with the function c&t, 0) 
holds at the instant t<Pl if the function is continuous in 11, and the maximum in (2.5) is 

attained for any zf 0 v>O on the unique vector 9. 

Lemma 2. Let the condition of regularity hold at the instant t<p. Then from the 
necessary conditions (2.15) it follows that 

5 -z (p - vrp(t))ut”, p ‘2 q(t); q(t) = my @(t, I$) (3.X) 

The proof follows from inequality (2.15) and Theorem 2. 

t< 
Lemma 3. Let the condition of regularity with the function a = P, 

P. Then from the necessary conditions (2.15) it follows that 

hold at the instant 

z E (p - vF(t))U,” + VW@), p 2 “P(t); w(t) = (F(t) - f(t))u,* P-9) 
The proof follows from Lemmas 1 and 2 and from the form of the function F, (2.6), f (2.8). 

Lemma 4. Let the condition of regularity with the function CD = F,, i.> ‘I hold at the 

instant t<p. Then from the necessary conditions (2.15) it follows that 

z -y (IL - vF(t))UtP, CL -3 yF(t) (3.10) 

The proof follows from formulas (2.7) and (2.10) and relations (3.8). 
The relation vtP = f(t)UIP holds for single-type games /4, 5/. In this case, Erom 

formulas (2.6) and (2.8) it follows that F,(t,$)= F(t). This, together with (2.151, yields 

conditions (3.10). 

Let us consider the case when the region of accessibility of the first player at the 

instant t has the form 

u,p = {z: I tz, ei tt)) f < ai (t)7 t = 17. . -5 n} (3.11) 

Here the vectors et (t) form the basis in R”, and 0~~ are non-increasing functions. Let 

us write 

w (t) = {z : I (2, ei (t)) I < F(t) - @ (t, ei (t)), i = 1, . ., n) 

Using the linear dependence of the vectors ei (t) and the formula (3.11), we can find 

that the first inclusion (3.9) follows from the necessary conditions (2.15). 

4. We shall seek the sufficient conditions for termination of the game in the form 

ZE(P- vF(t))U,P+vW(t), pLvYF(t)>O (4.1) 

The necessary conditions (2.16) yield the inclusion W(t)C K,(t), i>O. If we denote by 

2 the geometrical difference /13/, then from (2.16) and the form of the function (2.6) we 

obtain 

W(t) c F (t) i7f 2 VP = K,, (t) (4.2) 

Let us require that the family of sets (4.1) be a stable bridge /8, 9/. Then we can 

find that 

W (t) c W (z) + (F (t) - F (~1) U,“, t < t (4.3) 

Definition 1. The family of sets W(t) satisfies the condition of stability, if for 

any s>O and any point '<P there exists a number S> 0 such that the following 

inclusion holds for any t<z from the 6-neighbourhood of the point r: 

W(t) c W (4 -I- (Fe (t) - Fe (z)) iJTp, F, (t) = F (t) + (P - t)e (4.4) 

We note that if the matrix N and equations of motion (1.1) satisfy the local Lipshitz 

condition, then the condition of stability (4.4) follows from the inclusion (4.3). 

It can be shown that if the family of sets W(t) satisfies the inclusion (4.2) and the 
condition of stability (4.41, then for any s>O and any initial instant t,<p there 
exists a sequence t, < t, < . . . < ti -+ p such, that the inclusion (4.4) holds for t = ti, ‘T = 

ti+i and 

W (t) + J'?' c Fe (b) U,* (4.5) 

Note 1. The family of sets W(t) = 0 satisfies the inclusion (4.2) and the condition 
of stability (4.4). 

Definition 3. We shall call the strategy of the first player the sequence of points 

t, < t, < ... < ti - P and the rule which places in correspondence with every triad of points 

zV CL? ti I the function IL : Iti-iv ti1 -+E, whose variation does not exceed y. 
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If the strategy of the first player and initial position 2 (&I)* p (G y (Gl) are given, 

then, when the control of the second player at the instant t, is chosen on the segment [to, tl], 

a position is realized determined by formulas (1.2) and (1.3). The position is determined in 

this manner at every instant ti. It can be shown that this sequence of positions has a limit, 

and the limit is represented by the position of the instant of termination p. 

Let us write for ZE R”, PLO, t<P, E>O 

b (z, t, p, E) = mas {b : 0 < bF, (t) < p, z E (p - bF, (t))Utp + bW (t)) (4.6) 

If the inclusion in (4.6) does not hold for all bF~(t)< cc, then we assume that b (3, t, 

p, a) = + co* 

Theorem 3. Let the initial state ~0, po, vo. to be such, that the following inequality 

holds for some e>O: 

V', < b (20, t,, kr,, E) = b, < + OQ (4.7) 
Then a strategy of the first player will exist guaranteeing the termination (1.6). 

Proof. Using the number a>O, we construct a sequence of numbers t, < ti < *.* < tl + P, 
such that inclusions (4.4) and (4.5) hold for t= ti, T = ti,,. 

Let us describe the rule used inconstructing thecontrol u: [tl, ti+11 +E,. If b = b (z, ti, 

,k E) = + ‘=‘a then we take any admissible control. Let b < + 00. Then from (4.6) it follows 
that 

z=r+y, "E(P- bF, (ti)) Urip> YE bW (ti) (4.8) 

Consider the problem of the momenta /lo/ 

Let 'pO and u0 be the solution of problem (4.9). 

‘PO S CL - bFz (4) G-10) 
fi+1 

xf ‘5 N (4 duo (4 E (P - bFE (td - 
ti 

i II duo (r) III) UC,, 

i 

The first inequality in (4.10) follows from (4.8). We take ~0 : Iti, t,+ll -+ El as the 

control of the first player. 

Let US assume that the position ~1, pi, pi realized at the instant t, satisfies the 

inequality 

Vi < b (zi, ti, pi* E) = bi < + 00 (4.11) 

Condition (4.8) will hold for Z = Zir b = pi, b = bi. Suppose that the second player has 

chosen the control v : [ti, &,I + E,, and has lost q of his resources. Then using the inclusions 

(4.4), (4.5) and (4.8), we obtain 

ti+l 

YS s ~4 (r) du (4 E biW (td + @t,P C 4 W W + vti? -I- 

(bi - 4) W (ti) C qJ’z (ti)U(+, + (bi - 4) W (TV) 

and this will yield, with help of (4.10) and of the first relation of (4.8), 

zitr E (pi+1 - (bi - Q)F~ (ti+l)) 'fi+r + (b, -4)W (ti+l) 

p;+r > (bi - 4) Fe (ti+A 

Therefore the inequality (4.11) will hold far the position realized at the instant tic1 

and b;+l > bi - q > vg - q = vi+i. 
From the inequality (4.11) and inclusion (4.5) we can find that 21 +vIVfIpC ptUPri, and 

this implies that the inclusion (1.6) will hold for the limiting position. 
Passing to the limit, we can find from Theorem 3 that conditions (4.1) define a stable 

bridge /a, 9/. me can construct a strategy of the first player /8/ extremal with respect to 

the bridge, but this algorithm utilises the quantity V. The algorithm for constructing the 

control LI according to the rule (4.91, does not utilize this information. 

5. WC can use the following procedure /14/ to construct the sets w(t): 

w. (t) = Ki (t), WIT+1 (t) = t$_(W~ @) + (F (t) - F (4) U?) (5.1) 
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Here the number i>U is fixed. We note that wk+, (t)'17 wh. (t). From this we can find 
/14/ that the inclusion (4.3) holds. 

Let us consider a game with region of accessibility (3.11). We shallseekthe sets W(t)in 

the form (3.11), with the functions ai (t) replaced by J/i (t). Then the set appearing on the 
right-hand side of the inclusion (4.4) will have the form 

{z E H" : 1 (z, ei (T)) I c, yi (r) + (F(t) - I:(T) + (r - (5.2) 
t) E) q(t), i = 1, . . ., n} 

From the linear independence of the vectors ei it follows that ei (r) = %i (77 i)el(l) + 

. . . f Ui, (T, t) e, (t), and this, taking (5.2) into account, implies that the inclusion (4.4) will 

hold if 

j$l I aij (~71) I yj (t) G it (T) + (F (t) - F (x) + (T - t) e) ai (7) (5.3) 

It can be shown that the inclusion (4.2) will hold if 

Yi (t) < F (t) ai (t) - m2 (t, ei (t)), i = 1, . ., ?Z 

For the class of games under discussion, the function f (2.8) has the form 

(5.4) 

(5.5) 

Example /3/. Let z E R2 and let 

el @) = (0, I), e, (t) = (2, t - p), a, (1) = 1, a2 (t) = p - t 

in formula (3.11). The vectogram of the second player has the form 

v (0 = ((% z2) E HZ : q = v sin (p - t), z2 = v cos (p - 1), ( u ) < ii 

Using (5.5) we can show that 

F(t) = mz (b ~2 (t)) : 2 sin (p - t) 
a2 (t) P---t 

-ccos(P--), P--agt<p 

F(t) = F (P - a), t <p - a; 2 ctg a = Za-' - a, 0 <a < n 

From this it follows that F(f)>l= m,(t, e,, (1)) when t<p. The inequalities (5.3) take the 

form 

Y, (t) < YI (z) + F (t) - F (7) + (T - 0 8 (5.6) 

(r - t) Y, (t) + Y, (t) <YZ (T) + (I;‘ (4 -F (7)) (P -T) + (t - 11 F (p - 7) 

It can be shown that the functions yl(l)= min(F(t)- 1; (t-p) F’(t)), yz(l)=O, in the neighbour- 

hood of every point r< p, satisfy inequalities (5.6), 

every t<p. 
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ASYMPTOTIC TRAJECTORIES AND THE STABILITY OF THE PERIODIC MOTIONS OF 
AN AUTONOMOUS HAMILTONIAN SYSTEM WITH TWO DEGREES OF FREEDOM* 

A.P. MARKEYEV 

The existence of motions asymptotic to the periodic trajectories of a 
Hamiltonian system with two degrees of freedom is studied. It is assumed 
that the Hamiltonian function is time-independent and analytic in the 
neighbourhood of the periodic trajectories. It is noted that, under 
certain constraints, the conditions for the existence of asymptotic 
trajectories are equivalent to the conditions for orbital instability of 
the limiting periodic motion. As an application, the asymptotic trajectories 
in the problem of the motion of a dynamically symmetric rigid body relative 
to the centre of mass in a central Newtonian gravitational field in a 
circular orbit and in the problem of the motion of a heavy rigid body with 
a fixed point are considered, 

1. Isoenergetic reduction. Let a generalized conserative system with two degrees 
of freedom have a T-periodic motion, distinct from the equilibrium position, and in the 
neighbourhood of the closed trajectory of the phase space corresponding to this periodic 
motion (PM), let the Hamiltonian function H be analytic. 

Two characteristic exponents of the system of equations of the perturbedmotion, linearized 
in the neighbourhood of the periodic motion, are always (in the case of an autonomous 
Hamiltonian system) equal to zero. If the other two characteristic exponents have a non-zero 
real part, then the PM is orbitally unstable. If they are pure imaginary (equal to *ia), 
then both orbital instability and stability are possible, depending on the type of non-linear 
terms in the equations of the perturbed motion. In fact, if kaf no(w = 2&T; k = 1, 2, 3, 4; 
n is an integer), we usually have orbital stability; the case k = I,2 correspond to the 
boundary of the domains of orbital stability to a first approximation, while with k = 3,4 
orbital instability is possible inside these domains. A similar description of the conditions 
for stability and instability may be found in /l, 2/; we shall merely remark here that they 
are the same as the stability and instability conditions at the isoenergetic level Hz/r.= 

const, at which the trajectory of the PM considered lies. 
To solve the problem of the existence of trajectories asymptotic to the PM trajectory, 

we observe that the asymptotic trajectories must correspond to the same value of the constant 
h as does the PM trajectory. At this fixed energy level, the equations of motion (Whittaker 
equations) have the form of the Hamilton equations /3/. Let us obtain these. 

We can always choose /4/ (though in general this is extremely difficult) the canonical 
conjugate variables ,qi, pi (i = 1,2) i n such a way that the PM corresponds to their values 

91 = 6Jt + 410, Pi = 42 = P2 = 8 (I.11 

where t is time, and qlo is the initial value of the coordinate 4%. The Hamiltonian function 
is then &r-periodic in q,. 

It can be assumed without loss of generality that the trajectory of the PM (1.1) lies at 
the zero energy level H= 0. The Hamiltonian function can be expanded in a converging series 
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